Metallorganische Gerüste mit Huckepack-Struktur

  • Photonen-Hochkonversion: Die Energieübertragung zwischen den Molekülen basiert auf einem Austausch von Elektronen (Dexter-Transfer) (Abbildung: Michael Oldenburg)Photonen-Hochkonversion: Die Energieübertragung zwischen den Molekülen basiert auf einem Austausch von Elektronen (Dexter-Transfer) (Abbildung: Michael Oldenburg)

Metallorganische Gerüstverbindungen (MOFs – Metal Organic Frameworks) sind hochgeordnete molekulare Systeme aus metallischen Knotenpunkten und organischen Streben. Am Institut für Funktionelle Grenzflächen (IFG) des KIT haben Forscher MOFs entwickelt, die schichtweise auf der Oberfläche von Substraten wachsen (Surface Mounted Metal Organic Frameworks – SURMOFs). Die Wissenschaftler konnten erstmal zeigen, dass innere Grenzflächen zwischen diesen SURMOFs sich optimal für die Hochkonversion von Photonen eignen. Bei diesem Vorgang werden zwei Photonen mit niedrigerer Energie in ein Photon mit höherer Energie umgewandelt.

Ein wichtiger Anwendungsbereich der SURMOFs liegt in der Optoelektronik, das heißt in Bauteilen, die Licht in elektrische Energie oder elektrische Energie in Licht umwandeln. Viele dieser Bauteile funktionieren auf der Basis von Halbleitern. „Die SURMOFs vereinen Vorteile organischer und anorganischer Halbleiter“, so Prof. Christof Wöll, der Leiter des IFG. „Sie verbinden chemische Vielfalt und Kristallinität und ermöglichen den Aufbau geordneter Heterostrukturen.“ In vielen optoelektronischen Bauteilen kontrolliert ein sogenannter Heteroübergang – eine Grenzschicht zwischen zwei unterschiedlichen Halbleitermaterialien – den Energietransfer zwischen den verschiedenen Anregungszuständen. Forscher des Instituts für Mikrostrukturtechnik (IMT) des KIT haben nun einen neuen Huckepack-SURMOF geschaffen, indem sie einen zweiten SURMOF auf einem ersten epitaktisch, das heißt schichtweise, aufwachsen ließen. An diesem Heteroübergang gelang es den Wissenschaftlern, eine Photonen-Hochkonversion zur erreichen. „So wird aus grünem Licht blaues Licht, das kurzwelliger und energiereicher ist. Sehr wichtig für die Photovoltaik“, erläuterte Prof. Bryce Richards, Leiter des IMT.

Der von den Karlsruher Forschern gezeigte Prozess der Photonen-Hochkonversion basiert auf der sogenannten Triplett-Triplett-Annihilierung. Zwei Moleküle sind involviert: ein Sensibilisator-Molekül, das Photonen, absorbiert und Triplett-Anregungszustände erzeugt, und ein Emitter-Molekül, das diese Triplett-Anregungszustände übernimmt und über Triplett-Triplett-Annihilierung ein Photon aussendet, das energiereicher ist als die ursprünglich absorbierten Photonen.

Da der Triplett-Transfer auf einem Austausch von Elektronen beruht, schließt der gezeigte Prozess der Photonen-Hochkonversion einen Elektronentransfer über die Grenzschicht zwischen den beiden SURMOFs ein.

Dies legt nahe, dass sich SURMOF-SURMOF-Heteroübergänge für viele optoelektronische Anwendungen eignen, beispielsweise Leuchtdioden und Solarzellen. Heutige Solarzellen sind in ihrem Wirkungsgrad unter anderem dadurch begrenzt, dass sie nur Photonen mit einer bestimmten Mindestenergie zur Stromerzeugung nutzen können. Eine Hochkonversion könnte Photovoltaik deutlich effizienter machen.

Originalveröffentlichung:
M. Oldenburg, A. Turshatov, D. Busko, S. Wollgarten, M. Adams, N. Baroni, A. Welle, E. Redel, C. Wöll, B. S. Richards, .I. A. Howard, Photon Upconversion at Crystalline Organic-Organic Heterojunctions, Adv. Mater. (2016) – DOI: 10.1002/adma.201601718

Das könnte Sie auch interessieren

Jetzt registrieren!

Die neusten Informationen direkt per Newsletter.

To prevent automated spam submissions leave this field empty.