Poröse Salze für Brennstoffzellen

Organische Salze mit hoher Protonenleitfähigkeit

  • Schematischer Aufbau einer Brennstoffzelle. Bild: Artwork studio BKK/Shutterstock.Schematischer Aufbau einer Brennstoffzelle. Bild: Artwork studio BKK/Shutterstock.

Für Anwendungen wie Protonenaustauscher-Membranen in Brennstoffzellen wurde eine neue Klasse kristalliner poröser organischer Salze mit hoher Protonenleitfähigkeit entwickelt. Wie Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, spielen polare Kanäle, die Wasser enthalten, eine entscheidende Rolle für die Protonenleitung. Bei etwa 60 °C und hoher Luftfeuchtigkeit ist die Protonenleitfähigkeit dieser Materialien eine der höchsten der bisher für diese Klasse beschriebenen.

Poröse organische Materialien sind für viele Anwendungen interessant, z.B. für katalytische Systeme, Trennprozesse und die Speicherung von Gasen. So verschieden diese gerüstartig aufgebauten Strukturen sind, so ist ihnen doch eines gemein: Ihre Bestandteile sind über kovalente Bindungen verknüpft. Poröse organische Salze sind dagegen eine neue Stoffklasse, deren Bausteine über ionische Bindungen, also Anziehungskräfte zwischen positiv und negativ geladenen Ionen, zusammengehalten werden. Ihre Herstellung ist eine Herausforderung, da ihre Porenstruktur meist kollabiert: Die ionischen Bindungen bisheriger organischer Salze sind nicht stark genug, um eine poröse Struktur zu stabilisieren.

Den Forschern um Teng Ben von der Jilin-Universität (Changchun, China) ist es nun gelungen, organische Basen und Säuren so zu kombinieren, dass Salze mit sehr starken Bindungen entstehen, deren genau definierte kristalline Strukturen stabile Porensysteme bilden. Diese hochporösen Feststoffe weisen die höchste bisher für organische Salze beschriebene innere Oberfläche auf. Die Wissenschaftler konnten zeigen, dass eine deutliche Korrelation zwischen der Stärke der ionischen Bindungen und der Stabilität der porösen Strukturen besteht.

Die Poren der Salze bilden eindimensionale Kanäle und können Wasser einschließen. Die Wassermoleküle sind untereinander und mit den geladenen Gruppen über Wasserstoffbrückenbindungen fest verbunden. Dies verleiht den Salzen ihre außergewöhnlich hohe Protonenleitfähigkeit. Materialien mit hoher Protonenleitfähigkeit sind in ins Zentrum des Interesses gerückt, da sie als Elektrolyt für Brennstoffzellen gesucht sind. Bei Brennstoffzellen laufen zwei Teilreaktionen einer chemischen Reaktion räumlich getrennt ab, in der gängigsten Variante ist das die Reaktion von Sauerstoff und Wasserstoff zu Wasser.

Dazu müssen die beiden Zellen über einen Elektrolyten Protonen (positiv geladene Wasserstoffionen) austauschen – üblicherweise über eine protonenleitende Polymermembran. Die Wissenschaft ist aber auf der Suche nach leistungsfähigeren, robusteren Elektrolyten. Die neuen Salze könnten dafür in Frage kommen. Sie sind auch bei höheren Temperaturen sehr stabil und mit steigender Temperatur nimmt ihre Protonenleitfähigkeit zu.

In den herkömmlichen Polymermembranen erfolgt der Protonentransport durch wassergefüllte Kanäle, indem die Protonen innerhalb des Netzwerks über Wasserstoffbrücken verbundener Wassermoleküle von einem Molekül zum nächsten weitergereicht werden. In den Salzen ist der Transportmechanismus ein anderer. Wie Berechnungen ergaben, werden die Protonen hier per „Kurier“ durch die Kanälchen geschickt: Ein Wassermolekül bindet ein Proton, diffundiert durch den Kanal und gibt es auf der anderen Seite wieder ab.

Originalveröffentlichung:

Guolong Xing, Tingting Yan, Saikat Das, Teng Ben, Shilun Qiu: Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity, Angew. Chem. (2018); DOI: 0.1002/ange.201800423.

Weitere Wissenschaftsnachrichten im Pressezentrum der Angewandten Chemie

Jetzt registrieren!

Die neusten Informationen direkt per Newsletter.

To prevent automated spam submissions leave this field empty.